White Dwarf Mergers as Multi-Messenger Sources: An overview of sources in galactic fields and dense star clusters

Kyle Kremer

White Dwarf Mergers as Multi-Messenger Sources:

An overview of sources in galactic fields and dense star clusters

- 1. Thousands of inspiraling Galactic white dwarf binaries will be resolvable as gravitational wave sources by LISA
- 2. White dwarf mergers may lead to a diverse range of outcomes
 - Type Ia/Iax/.Ia SNe, "Ca-strong" transients, others? (Explosive WD transient session; K. Maguire, B. Rose, A. Polin)
 - Many likely collapse into neutron stars
- 3. White dwarf mergers in dense star clusters
 - Young radio pulsars observed
 - Recent fast radio burst in M81 globular cluster a young magnetic neutron star born from white dwarf merger?

Kyle Kremer

LISA: A millihertz gravitational wave observatory

LISA: A millihertz gravitational wave observatory

- Total white dwarf binaries in Milky Way: $\sim 5 \times 10^8$
- Total with $f_{\rm GW} > 10^{-4}$ Hz: $\sim 6 \times 10^{7}$
- Total individually resolvable: $\sim 10^3 10^4$

e.g., Nelemans+2001, Ruiter+2010, Nissanke+2012, Lamberts+2019, Breivik+2020

Growing catalog of LISA verification binaries

Zwicky Transient Facility (ZTF) survey (~20 sources)

(Burdge+2019a,2019b, 2020, Coughlin+2020, van Roestel+2022)

Extremely Low Mass (ELM) white dwarf survey (~100 sources)

(Brown+2010, 2012, 2013, 2020, Kilic+2011, 2012, 2014, Gianninas+2015)

Session on nonterminal sources: S. Scaringi, K. Burdge, R. Martinez-Galarza

Outcomes of White Dwarf Mass Transfer

$$\dot{f} = \dot{f}_{GR} + \dot{f}_{mass} + \dot{f}_{tides}$$

Lower-mass white dwarf fills Roche lobe

Stable mass transfer? Merger?

Outcomes of White Dwarf Mass Transfer

$$\dot{f} = \dot{f}_{GR} + \dot{f}_{mass} + \dot{f}_{tides}$$

Secondary Mass (M_☉

Stable mass transfer:

Long-lived accreting binaries—
 AM CVn?

(e.g., Smak 1967, Paczyński 1967, Nather+1981, Tutukov & Yungleson 1996, Nelemans+2001, Marsh+2004, Gokhale+2007, Dan+2012, Kremer+2015)

- "Outspiralling" LISA sources? (e.g., Kremer+2017, Breivik+2018, Tauris+2018)
- Caveat? *All* binaries may merge due to nova outbursts (e.g., *Shen 2015*)

Unstable mass transfer:

Mergers

Phases	of Mas	ssive V	Vhite 1	Dwarf 1	Mergers
1 mascs	UI IVIA		VIIII L	DWall	vicigois

Binary Inspiral

Dynamical (tidal disruption)

Viscous

Thermal

Final Remnant

$$t \sim Myr$$

 $t \sim 10^2 - 10^3 \text{ s}$

 $t \sim 10^4 - 10^8 \text{ s}$

 $t \sim 10^4 \, \mathrm{yr}$

Phases of Massive White Dwarf Mergers

Binary Inspiral

 $t \sim Myr$

Dynamical (tidal disruption)

 $t \sim 10^2 - 10^3 \text{ s}$

Viscous

Thermal

Final Remnant

 $t \sim 10^4 - 10^8 \,\mathrm{s}$ $t \sim 10^4 \,\mathrm{yr}$

Mass ratio determines disruption dynamics

General outcome: Lower-mass WD is tidally disrupted and forms quasi-Keplerian disk around massive WD

For $q \sim 1$ and $M_{tot} > 2.1 M_{\odot}$, temperatures may be hot enough to promptly ignite Carbon

super-Chandra Type Ia? (e.g., SNLS-03D3bb; Howell+2006)

Hydrodynamic simulations: e.g., Benz+1990, Rasio & Shapiro 1995, Guerrero+2004, Yoon+2007, Lorén-Aguilar+2009, Pakmor+2010, Dan+2011, García-Berro+2012, Dan+2014

Phases of Massive White Dwarf Mergers

Binary Inspiral

Dynamical (tidal disruption)

Viscous

Thermal

Final Remnant

 $t \sim \text{Myr}$

 $t \sim 10^2 - 10^3 \text{ s}$

 $t \sim 10^4 - 10^8 \text{ s}$

 $t \sim 10^4 \, \mathrm{yr}$

General outcome: Viscous heating in Keplerian disk leads to expansion and formation of *spherical envelope*

See also MHD simulations of Schwab+2012

Phases of Massive White Dwarf Mergers

Binary Inspiral

Dynamical (tidal disruption)

Viscous

Thermal

Final Remnant

 $t \sim Myr$

 $t \sim 10^2 - 10^3 \text{ s}$

 $t \sim 10^4 - 10^8 \text{ s}$

 $t \sim 10^4 \, \mathrm{yr}$

"Luminous giant" phase:

Envelope $(r_{env} \sim 100R_{\odot}, T \sim 4000 - 5000 \text{ K})$ radiates

away merger energy at Eddington luminosity ($L \sim 10^{4.5} L_{\odot}$) for ~ 10 kyr as Carbon flame travels inward

- *O* (10) sources expected in Milky Way and M31
- If dust obscured, bright infrared
 sources for JWST?
- R Coronae Borealis stars? (e.g., Webbink 1984, Clayton 2012)
- J005311 a possible candidate? Gvaramadze+2019

After thermal phase

(noting *uncertain* envelope wind mass loss)

Highly magnetic and rapidly rotating remnant?

White dwarf remnant

• e.g., Ferrario+1997, Külebi+2010, Hollands+2020, Caiazzo+2021

Neutron star/ (milli)second pulsar/magnetar?

- e.g., King+2001, Levan+2006, Schwab 2021 Kremer+2021
- Evidence in globular clusters?

Final outcomes for different merger masses

(adapted from Shen 2015; see also Dan+2014, Marsh+2004)

Typical Globular Cluster:

- Main sequence stars $(M \approx 0.1 150 M_{\odot}; N \approx 10^6)$
- Black holes $(M \approx 30 M_{\odot}; N \approx 1000)$
- White dwarfs $(M \approx 0.5 1.4 M_{\odot}; N > 10^4)$

Black holes *dynamically heat* host cluster through binary burning

Motivated by observations of XRBs, pulsars, CVs, white dwarfs in clusters (e.g., Clark 1975, Grindlay+1995, Freire 2012, Richer+1995, Harris+1996) and N-body modeling (e.g., Mackey+2008, Breen & Heggie 2013, Morscher+2015, Wang+2016, Arca Sedda+2018, Askar+2018, Ye+2019, Kremer+2020)

Typical Globular Cluster:

- Main sequence stars $(M \approx 0.1 150 M_{\odot}; N \approx 10^6)$
- Black holes $(M \approx 30 M_{\odot}; N \approx 1000)$
- White dwarfs $(M \approx 0.5 1.4 M_{\odot}; N > 10^4)$

Black holes *dynamically heat* host cluster through binary burning

Talk to me later about:

- Binary black hole mergers (LIGO sources)
- Stellar tidal disruption events

(Rubin sources?)

Typical Globular Cluster:

- Main sequence stars $(M \approx 0.1 150 M_{\odot}; N \approx 10^6)$
- Black holes $(M \approx 30 M_{\odot}; N \approx 1000)$
- White dwarfs $(M \approx 0.5 1.4 M_{\odot}; N > 10^4)$

Black holes *dynamically heat* host cluster through binary burning

Core-collapsed Globular Cluster:

- All black holes have been ejected
- Lower mass objects sink to center and cluster core collapses
- See Vitrol & Mamon 2021, Vitrol+2022 for constraints on central WD population in *NGC 6397*

In Milky Way ~20% of clusters have undergone core collapse

Motivated by observations of XRBs, pulsars, CVs, white dwarfs in clusters (e.g., Clark 1975, Grindlay+1995, Freire 2012, Richer+1995, Harris+1996) and N-body modeling (e.g., Mackey+2008, Breen & Heggie 2013, Morscher+2015, Wang+2016, Arca Sedda+2018, Askar+2018, Ye+2019, Kremer+2020)

Typical Globular Cluster:

- Main sequence stars $(M \approx 0.1 150 M_{\odot}; N \approx 10^6)$
- Black holes $(M \approx 30 M_{\odot}; N \approx 1000)$
- White dwarfs $(M \approx 0.5 1.4 M_{\odot}; N > 10^4)$

Core-collapsed Globular Cluster:

- All black holes have been ejected
- Lower mass objects sink to center and cluster core collapses
- See Vitrol & Mamon 2021, Vitrol+2022 for constraints on central WD population

Black holes thi

Typical core-collapsed globular cluster:

$$n_{\rm WD} \approx 10^6 \, \mathrm{pc}^{-3}$$

- Dozens of massive WD binaries
- Roughly 10 WD+WD mergers per Gyr
- O (1) resolvable LISA source per cluster

e.g., Larson+1984, Sigurdsson & Phinney 1995, Kremer+2021, Vitrol, Kremer+2022 ave

Merger outcomes from cluster simulations

Kremer+2021

• ~90% of mergers have $M_{\text{tot}} > M_{\text{Ch}}$

Merger outcomes from cluster simulations

Kremer+2021

- ~90% of mergers have $M_{\text{tot}} > M_{\text{Ch}}$
- > 60% likely collapse to neutron star

Merger outcomes from cluster simulations

Kremer+2021

- $\sim 90\%$ of mergers have $M_{\text{tot}} > M_{\text{Ch}}$
- > 60% likely collapse to neutron star

Type Ia SNe?

- Rate of up to ~50 Gpc⁻³ yr ⁻¹ in local universe (<1% of SN Ia rate)

Observation of young NS in old GC would be clear evidence for this process

Detecting neutron stars as pulsars

- Pulsars spin down over time due to magnetic dipole radiation
- Unless recycled through accretion, pulsars eventually fall below "death line" and become undetectable

Characteristic age of a pulsar:

$$\tau_{\text{spin}} \approx \frac{P}{2\dot{P}} \sim 10^8 \text{ yr} \left(\frac{P}{100 \text{ ms}}\right)^2 \left(\frac{B}{10^{11} \text{G}}\right)^{-2}$$

In old (>10 Gyr) globular clusters, CCSN pulsars are now *undetectable*

Detecting neutron stars as pulsars

- Pulsars spin down over time due to magnetic dipole radiation
- Unless recycled through accretion, pulsars eventually fall below "death line" and become undetectable

Characteristic age of a pulsar:

$$\tau_{\text{spin}} \approx \frac{P}{2\dot{P}} \sim 10^8 \text{ yr} \left(\frac{P}{100 \text{ ms}}\right)^2 \left(\frac{B}{10^{11} \text{G}}\right)^{-2}$$

Four *young* pulsars observed in Milky Way globular clusters

	P(s)	\dot{P} (s s ⁻¹)	<i>B</i> (G)	age (yr)
B1718-19	1.004	1.6 x 10 ⁻¹⁵	1.3×10^{12}	9.8×10^6
J1745-20A	0.289	4.0 x 10 ⁻¹⁶	3.4×10^{11}	1.1×10^7
J1820-30B	0.379	3.0 x 10 ⁻¹⁷	1.1x 10 ¹¹	2.0×10^8
J1823-3021C	0.406	2.2 x 10 ⁻¹⁶	3.0×10^{11}	2.9×10^7

(e.g., Boyles+2011, Tauris+2013)

Neutron Stars: Sources of Fast Radio Bursts?

Proposed neutron star models:

- FRB powered by magnetic activity/rotation power
- Isolated? (e.g., pulsars, magnetars)
- Interacting? (e.g., accretion from binary companion)
- Merging NSs (e.g., similar to short GRBs)

Recently...

FRB detected in Milky Way in association with a magnetar with known supernova remnant

(CHIME/FRB Collaboration+2020, Bochenek+2020)

→ Magnetar models can explain at least some FRBs

A Repeating FRB in a Globular Cluster in M81

Bhardwaj et al. 2021 — Initial FRB detection

Kirsten et al. 2021 — Localization to a cluster

Digital Sky Survey RGB image of region near M81 from Bhardwaj+2021

- 7 bursts over ~100 hr on-source time
- Peak fluence ~ 1 Jy ms
 —> peak (radio)
 luminosity ~ 10³⁷ erg/s
- Distance ~ 3.6 Mpc (closest extragalactic FRB known)
- CCSN magnetar
 cannot explain this
 source!

M81 FRB powered by magnetar from white dwarf merger

Kremer, Piro & Li 2021; see also Lu, Beniamini & Kumar 2022

Active FRB lifetime of ~10⁶ yr is consistent with M81 FRB detection for cluster WD merger rate of ~10 Gpc⁻³ yr ⁻¹

Spin-down timescale:

$$\tau_{\text{spin}} \approx \frac{P}{2\dot{P}} \sim 10^6 \text{ yr} \left(\frac{P}{10 \text{ ms}}\right)^2 \left(\frac{B}{10^{11} \text{G}}\right)^{-2}$$

Magnetic activity timescale:

$$\tau_{\text{mag}} \approx 10^6 \text{ yr} \left(\frac{B}{3 \times 10^{14} \text{ G}} \right)^{-1.2} \left(\frac{L}{1 \text{km}} \right)^{1.6}$$

Both plausibly consistent with energetics for radio efficiency, $f_{\rm r}$ << 1 Observed time-averaged (isotropic equiv) luminosity:

$$\langle \dot{E} \rangle \approx 10^{29} f_{\rm r}^{-1} \text{ erg s}^{-1}$$
 (from CHIME; Bhardwaj+2021)

M81 FRB powered by magnetar from white dwarf merger

Kremer, Piro & Li 2021; see also Lu, Beniamini & Kumar 2022

Active FRB lifetime of ~10⁶ yr is consistent

Future prospects:

 Analogous massive WD mergers in galactic fields — at similar/higher rate? (e.g., Yungelson & Livio 1998, Fryer+1999, Tauris+2013, Kwiatkowski 2015)

 Could M81 FRB-like events be common features of old stellar populations?

Both Obser

• Stay tuned! (CHIME, FAST, SKA, ...)

cluster WD

$$\left(\frac{B}{11}\right)^{-2}$$

$$\frac{L}{\mathrm{km}}$$

$$y, f_r << 1$$

 $\langle E \rangle \approx 10^{27} f_{\rm r}$ erg s ' (from CHIME; Bhardwaj+2021)

White Dwarf Binary inspiral Gravitational **Optical** waves (LISA) (e.g., Amaro-Seoane+2020) Binaries as (e.g., Burdge+2020) Multimessenger **Roche lobe overflow** stable? unstable? Sources X-ray/UV/ AM CVn Merger detonation? optical no detonation? (e.g., Smak 1967) LISA SN Ia Viscous disk → Optical/Infrared "Luminous giant" | super-Chandra? (e.g., Gvaramadze+2019?) (e.g., Maoz+2014)sub-Chandra? **Neutron star** Radio pulsars? **Massive (magnetic)** (e.g., Boyles+2011) white dwarf Fast radio bursts? (e.g., Bhardwaj+2021) e.g., optical (e.g., Caiazzo+2021) **Questions?**

How to form a young neutron star in a cluster?

1 FRB in M81 implies volumetric density $n_{\rm FRB} \sim 5 \times 10^6 \, \rm Gpc^{-3}$

Active lifetime required, $\tau \approx 5 \times 10^6 / R_{\rm src}$

We constrain FRB source formation rates from large suite of globular cluster N-body models; Kremer+2020, 2021

Event type	Total # in models	Rate per CC GC	Volumetric rate	Active lifetime required (τ)
		$[yr^{-1}]$	$[\mathrm{Gpc}^{-3}\mathrm{yr}^{-1}]$	$[imes (f_v \zeta)^{-1}]$
Super-Chandrasekhar WD+WD mergers	283	6×10^{-9}	4	$10^6 \mathrm{yr}$
(estimate including tidal capture)	-	7×10^{-8}	45	$10^5\mathrm{yr}$
WD+NS mergers	59	10^{-9}	0.8	$6 \times 10^6 \mathrm{yr}$
(estimate including tidal capture)	-	10^{-8}	6	$8 \times 10^5 \mathrm{yr}$
NS+NS mergers	6	10^{-10}	0.08	$6 \times 10^7 \mathrm{yr}$
AIC from binary RLO	21	5×10^{-10}	0.3	$2 \times 10^7 \mathrm{yr}$
WD+MS collisions $(M_{\rm WD} > 1.2 M_{\odot})$	1098	2×10^{-8}	15	$3 \times 10^5 \mathrm{yr}$
NS+MS collisions	301	7×10^{-9}	4	$10^6 \mathrm{yr}$
Inferred rate for M81 FRB	-	-	$\approx 5 \times 10^6 / \tau$	-

See Kremer, Piro & Li 2021, ApJL (arXiv:2107.03394)

Burst Energetics

Total burst fluence 6.6 Jy ms (Bhardwaj+2021) over ~100 hr on-source time gives time-averaged (isotropic equiv) luminosity:

$$\langle \dot{E} \rangle \approx 10^{29} f_{\rm r}^{-1} \text{ erg s}^{-1}$$

Magnetically powered:

(e.g., Popov & Postnov 2010, Lyubarsky 2014, Beloborodov 2017, Wang+2018, Metzger+2017, 2019)

$$E_{\rm mag} \approx \frac{1}{6} (B^2 R^3)$$

$$\tau_{\text{mag}} \approx 2 \times 10^5 \left(\frac{B}{10^{14} G}\right)^{-1.2} \left(\frac{L}{1 \text{km}}\right)^{1.6} \text{yr}$$

Spin down powered:

(e.g., Cordes & Wasserman 2016, Connor+2016, Lyutikov+2016)

$$E_{\rm rot} \approx 2\pi^2 I P^{-2}$$

$$\tau_{\text{rot}} \approx \frac{P}{\dot{P}} \approx 5 \times 10^5 \left(\frac{P}{10 \text{ms}}\right)^2 \left(\frac{B}{10^{11} \text{G}}\right)^{-2} \text{yr}$$

See Kremer, Piro & Li 2021, ApJL (arXiv:2107.03394)

See Kremer, Piro & Li 2021, ApJL (arXiv:2107.03394)

simulations

Magnetically-powered model:

- Requires B~ 10^{14} G and $f_r > 10^{-4}$
- Requires lifetime > observed lifetimes for Galactic magnetars

See Kremer, Piro & Li 2021, ApJL (arXiv:2107.03394)

Magnetically-powered model:

- Requires B~ 10^{14} G and $f_r > 10^{-4}$
- Requires lifetime > observed lifetimes for Galactic magnetars

- B-fields of $\sim 10^{11} 10^{12} \, \mathrm{G}$
- Spin periods of ~10-100ms
- Consistent with WD merger simulations

(e.g., Schwab 2016, 2021)

Millisecond pulsars?

- Viable only for efficient radio emission and small duty cycle

See Kremer, Piro & Li 2021, ApJL (arXiv:2107.03394)

Key take aways...

See Kremer, Piro & Li 2021, ApJL (arXiv:2107.03394)

- Core-collapsed globular cluster is most likely host future observations may confirm this
- Young neutron stars are formed at rate of ~50 Gpc⁻³ yr ⁻¹ in clusters local universe, likely sufficient to explain M81 FRB
- Magnetically-powered scenario is viable for radio emission efficiency $f_r > 10^{-4}$ and lifetimes longer than empirical lifetimes for Galactic magnetars
- Also viable are spin-down powered NSs with spin periods ~10ms and $B \sim 10^{11}$ G (consistent with those expected from WD mergers)
- Millisecond pulsars and/or X-ray binaries are viable if duty cycles for FRB emission is not too high
- X-ray binary may also be viable (e.g., Katz 2017, Sridhar+2021, Deng+2021)